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A NEW BOUND ON THE ABSORPTION
COEFFICIENT OF A TWO-PHASE MEDIUM

KONSTANTIN Z. MARKOV

The Doi bound on the effective absorption coefficient of a random two-phase medium
is revisited in this brief note. Defects are created in one of the constituents, being
absorbed by the other one, which thus act as a perfect sink. Use is made of a variational
principle due to Rubinstein and Torquato. The trial fields generalize the ones, originally
proposed by Doi, and hence the new bound is more restrictive than the original Doi’s
one for an arbitrary medium. In the particular case of an array of nonoverlapping
array of spherical sinks, the new bound however coincides with Doi’s and with the one,
derived by Talbot and Willis. In passing, besides the known “particle-particle” bound,
a curious new “surface-surface” bound is extracted. Though a bit weaker than the
Doi’s, this bound relies only upon the two-point “surface” statistics. In the dilute case
it reproduces the classical Smoluchowski result.
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Consider a two-phase random medium, consisting of a phase ‘1’, immersed into
an unbounded matrix (phase ‘2’). The medium is assumed statistically homoge-
neous and isotropic. Let a species (defects) be generated at the rate K within the
phase ‘2’ (matrix) occupying the region K2. It is absorbed by the “sink” phase
‘1’ in the region K1 = R

3\K2. In the steady-state limit the concentration of the
defects c(x) is governed by the well-known equations

∆c(x) + K = 0, x ∈ K2, c(x)
∣∣∣

∂K2

= 0. (1)

The creation of defects is exactly compensated by their removal from the sinks

k∗2 〈c(x)〉 = K(1 − η1). (2)
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(The brackets 〈·〉 denote ensemble averaging.) The rate constant k∗2 is the so-
called effective absorption coefficient (or the sink strength) of the medium. Its
evaluation and bounding for special kinds of random constitution and, above all,
for random dispersion of spheres, have been the subject of numerous works, starting
with the classical studies of Smoluchowski [1], see, e.g., [2–7], the survey [8], and
the references therein. (Note that we have added the factor 1 − η1 in (2), due to
the fact that in the case under study defects are created only within the phase ‘2’,
see [9] for a discussion.)

We shall confine the analysis to variational bounding of the sink strength k∗2,
taking into account the two-point statistical information concerning medium con-
stitution. The basic tool to be employed to this end is the variational principle
of Rubinstein and Torquato (R-T) [6]. The principle states that in the class of
statistically homogeneous trial fields such that

A =
{
u(x)

∣∣ ∆u(x) + K = 0, x ∈ K2

}
, (3)

the following inequality holds:

k∗2 ≥ K2(1 − η1)
〈I2(x)|∇u(x)|2〉 . (4)

Moreover, the equality sign in (4) is achieved if u(x) = c(x) is the actual field that
solves the problem (1).

Since
〈
I2(x)|∇u(x)|2

〉
≤

〈
|∇u(x)|2

〉
, another bound follows from (4):

k∗2 ≥ K2(1 − η1)
〈|∇u(x)|2〉 , (5)

see [6]. Though weaker than (4), the evaluation of the bound (5) is simpler, because
it obviously employs a smaller amount of statistical information.

Consider the trial fields

u(x) = −K

η1

∫
G(x − y)

(
λI1(y) − η1 +

µη1

S
|∇I1(y)|

)
dy , (6)

where G(x) = 1/(4π|x|) and the (nondimensional) constants λ, µ are adjustable.
Since I1(x) is the characteristic function of K1, |∇I1(x)| is δ-function, concentrated
on the interphase boundary. In turn, the quantity S in (6) is the so-called mean
surface, defined as S = 〈|∇I1(x)|〉.

Since ∆G(x) + δ(x) = 0, one has ∆u(x) + K = 0 if x ∈ K2. This means that
the fields u(x) in (6) are indeed admissible, u(x) ∈ A.

Consider now the quantity of central importance

U =
〈
|∇u(x)|2

〉
/K2 (7)

that enters the estimate (5). For the latter to be finite, and hence to produce a
nontrivial lower bound (5), it is necessary that the integrand in (6) have a zero
mean value. This implies

λ + µ = 1 , (8)
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since 〈I1(y)〉 = η1.
Note that the class of trial fields (6) generalizes the one, proposed by Doi

himself [2]:

u(x) = K

∫
G(x − y)

(
I2(y) + ξ |∇I1(x)|

)
dy . (9)

The condition that mean value of the integrand in (9) vanishes reads

η2 + ξS = 0 , (10)

so that, as pointed out in [6, 7], there is no place for optimization with respect to
ξ, as envisaged originally by Doi [2].

A simple check shows that our fields (6) reproduce the Doi’s one (9) for a
special choice of λ, namely, for

λ = η1 , µ = 1 − η1 , ξ = µ/S , (11)

cf. Eq. (8).
With Eq. (8) taken into account, the class (6) is recast as

u(x) = −K

η1

∫
G(x − y)

{
λI ′1(y) +

µη1

S

(
|∇I1(x)| − S

)}
dy ,

〈I ′1(y)〉 = 0 , 〈|∇I1(x)| − S〉 = 0 , (12)

I ′1(y) = I1(y) − η1 ,

so that both random variables in the right-hand side of (11)1 are fluctuations. Then
the needed quantity U , cf. (7), becomes

U =
a2

η2
1

(
λ2θ pp

1 + 2λµη1 θ ps
1 + µ2η2

1 θ ss
1

)
(13)

after an appropriate integration by parts. Here

θ pp
1 =

∫ ∞

0

ρF pp(ρ) dρ ,

θ ps
1 =

∫ ∞

0

ρF ps(ρ) dρ ,

θ ss
1 =

∫ ∞

0

ρF ss(ρ) dρ

(14)

are the first moments on the semiaxis (0,∞) of the “particle-particle,” “particle-
surface,” and “surface-surface” (two-point) correlation functions, respectively, de-
fined here as follows:

F pp(ρ) = 〈I ′1(x)I ′1(0)〉 ,

F ps(ρ) =
1
S

〈I ′1(x) (|∇I1(0)| − S)〉 ,

F ss(ρ) =
1
S2

〈(|∇I1(x)| − S) (∇|I1(0)| − S)〉 .

(15)
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The multipliers 1/S and 1/S2 have been added in the definitions (14) in order to
make the respective correlations dimensionless. In Eq. (14) ρ = r/a, r = |x|, where
a is a certain characteristic length for the phase ‘1’, for example, the mean size of
the sinks. If the sinks are identical spheres — a case to be specially discussed below
— then obviously a is to be identified with their radius.

In virtue of (8) and (13) we have

U = U(λ) =
a2

η2
1

{
λ2

(
θpp
1 − 2η1θ

ps
1 + η2

1θss
1

)
+ 2λη1 (θps

1 − η1θ
ss
1 ) + η2

1θss
1

}
. (16)

Optimizing (15) with respect to λ gives the estimate

k∗2a2 ≥ k∗2
N a2 , k∗2

N a2 = (1 − η1)
θpp
1 − 2η1θ

ps
1 + η2

1θss
1

θpp
1 θss

1 − (θps
1 )2

. (17)

This is our generalization of Doi’s bound. The latter shows up if λ = η1 in U ,
as given in (16):

k∗2 ≥ k∗2
D , k∗2

D a2 =
1 − η1

θpp
1 + 2η2θ

ps
1 + η2

2θ
ss
1

. (18)

It is clear that (17) always improves upon Doi’s bound (18), since we have
allowed for λ to be adjustable. The bounds (17) and (18) will coincide only if the
optimal λ, that minimizes U(λ) in (16), is exactly η1. The latter is the case if the
moments (14) for a given random constitution are, by chance, interconnected as
follows:

θpp
1 + (1 − 2η1)θ

ps
1 − η1η2θ

ss
1 = 0 . (19)

It is to be noted that, besides “Doi’s choice” λ = η1, two more particular values
of λ deserve a special attention.

The first choice is λ = 1. Then U = a2θpp
1 and Eqs. (5) and (7) yield

k∗2 ≥ k∗2
pp , k∗2

ppa2 =
η2
1(1 − η1)

θpp
1

. (20)

This is a known bound, called by Torquato and Rubinstein [5] “particle-particle.”
The reason behind this term is clear — the evaluation of k∗2

pp requires only the
statistical information incorporated into the “particle” correlation function F pp(ρ).

The second choice of interest is λ = 0. Then U = a2θss
1 , see (15), and Eqs. (5)

and (7) yield

k∗2 ≥ k∗2
ss , k∗2

ss a2 =
1 − η1

θss
1

. (21)

This is a new bound, which is natural to be called “surface-surface.” The reason for
this term is again clear. The evaluation of k∗2

ss this time requires only the statistical
information incorporated into the “surface” correlation function F pp(ρ).

Consider two classical examples that concern dispersions of identical spherical
sinks of radius a with number density n.
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In the first example the sinks are forbidden to overlap. Their centers are
distributed randomly with the two-point distribution function

f2(r) = n2g(r) . (22)

The interpretation is that f2(r) dVAdVB provides the probability of finding spheres
centers in the vicinities dVA and dVB of the points A and B, respectively, such that
the distance between the latter is r; the function g(r) in (21) is the familiar radial
distribution function.

The moments (14) have been evaluated in [10], among other statistical charac-
teristics of dispersions of nonoverlapping spheres, making use of the function g(r).
The needed, for our purposes, expressions read

θ pp
1 = η2

1

(
2 − 9η1

5η1
+ m1

)
,

θ ps
1 = η1

(
5 − 26η1

15η1
+ m1

)
,

θ ss
1 =

1 − 5η1

3η1
+ m1 ,

(23)

where η1 = 4
3πna3 is the volume fraction of the sinks (the phase ‘1’) and

m1 =
∫ ∞

2

ρν2(ρ) dρ , ν2(ρ) = g(ρ) − 1 , (24)

so that ν2(r) is the so-called total correlation function. A simple check shows that
the condition (19) is satisfied, whatever the total correlation. Hence our bound
coincides in this case with Doi’s one, yielding

k∗2 ≥ k∗2
D , k∗2

D a2 ≥ 3η1(1 − η1)
1 − 5η1 − η2

1/5 + 3η1m1
= 3η1 + o(η1). (25)

As indicated, the bound (25) is exact in the dilute limit η1 � 1, since it reproduces
in this case the well-known Smoluchowski’s result [1].

The bound (25) first appeared in Willis’ lecture [4]; a more precise derivation,
together with some generalizations, is due to Talbot and Willis [5], see also [11]
for a discussion and an alternative derivation, based on the Rubinstein-Torquato
variational principle (4). The fact that the original Doi’s bound for a dispersion of
nonoverlapping spheres can be recast in the elegant Talbot-Willis’ form (24) was
noticed also by Beasley and Torquato [12].

It is noted that the “particle-particle” and “surface-surface” bounds for the
dispersion under study have, respectively, the form

k∗2
ppa2 =

5η1(1 − η1)
2 − 9η1 + 5η1m1

= 5
2η1 + o(η1) ,

k∗2
ss a2 =

3η1(1 − η1)
1 − 5η1 + 3η1m1

= 3η1 + o(η1) ,

(26)
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see Eqs. (20) – (22).
Clearly, the “surface” bound k∗2

ss is superior to the “particle” one, which is
natural — the absorption phenomenon under study, Eq. (1), is governed by the
absorption, taking place on the interphase boundary. Moreover, k∗2

ss reproduces the
correct Smoluchowski’s value in the dilute limit, unlike k∗2

pp. Also, k∗2
ss is very close

to Doi’s bound k∗2
D , the sole difference being the term −η2

1/5 in the denominator,
cf. Eqs. (25) and (26). However, one cannot claim that k∗2

ss will be superior to k∗2
pp

for all random constitutions and for all values of η1. An example, when this is not
so, will be supplied below, when discussing the appropriate bounds for the Boolean
model of overlapping spheres.

In the simplest “well-stirred” dispersion g(r) − 1 = h2a(r), i.e. the spheres are
only forbidden to overlap (h2a(r) is the characteristic function for a sphere of radius
2a located at the origin). Then ν2(ρ) = 0, if ρ ≥ 2, m1 = 0 and the bounds (24),
(25) become

k∗2
ppa

2 =
5η1(1 − η1)

2 − 9η1
, k∗2

ss a2 =
3η1(1 − η1)

1 − 5η1
,

k∗2
D a2 =

3η1(1 − η1)
1 − 5η1 − η2

1/5
.

(27)

Obviously, the “particle” bound k∗2
pp fails in this case if η1 ≥ 2/9. Similarly, the

“surface” one, k∗2
ss , fails at η1 ≥ 0.2, and Doi-Talbot-Willis k∗2

D — at η1 ≥ η0
1 ,

η0
1 ≈ 0.1984 — a fact, explicitly underlined in [4, 5]. This means that the “well-

stirred” approximation is unrealistic beyond the value η0
1 of sphere fraction. This

fact, however, is of little interest due to the more recent result of Markov and Willis
[13, 14], stating that “well-stirred” approximation is already unrealistic if η1 ≥ 1/8.

More realistic than the well-stirred one is the Percus-Yevick (PY) approxi-
mation for a dispersion of nonoverlapping spheres [15], widely used in the liquid
state theory. The Laplace transform of the function ν2 is analytically known due
to Wertheim [16]. An appropriate asymptotic analysis of the Wertheim’s formula
allows one to obtain, in turn, a number of statistical characteristics of a PY dis-
persion, see [16, 6]. In particular, it turns out that the parameter (24), needed in
the bounds under consideration, is simply

mPY
1 =

η1(22 − η1)
5(1 + 2η1)

. (28)

(Note that an equivalent, but much more complicated formula for mPY
1 is given by

Talbot and Willis [5, Eqs. (8.14) and (8.15)].)
The formula (28), when inserted into (25), gives the Doi-Talbot-Willis bound

for a Percus-Yevick dispersion in an extremely simple form:

k∗2
D a2 =

3η1(1 + 2η1)
(1 − η1)2

. (29)

The values of k∗2
D obviously remain finite for all sphere fractions η1 ∈ (0, 1). This

fact makes the application of the PY approximation suspicious for higher volume
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fractions. The reason is that any realistic model of dispersions, in which the spheres
are forbidden to overlap, should fail for volume fractions higher than 0.64 — the
value corresponding approximately to the close packing of the inclusions.

The second case is the well-known randomly imbedded model of spheres [13,
14], called also Boolean [15]. Here an infinite family of points are placed “fully”
randomly throughout the space — more precisely, forming a Poissonian system of
number density (intensity) n. Identical spheres of the radius a are centered then
at these points, with overlapping permitted. The phase ‘2’ (the “sink-free” part) is
then defined as the region, empty of spheres. The “sink” phase ‘1’ comprises either
the single spheres or the aggregates, formed by families of overlapping spheres.

0 η1

k∗2a2

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

‘1’

‘2’

‘3’

‘4’

Fig. 1. The various bounds on the dimensionless effective absorption coefficient for the

Boolean model. ‘1’ — our new bound k∗2
N a2, see (17); ‘2’ — the Doi bound k∗2

D a2, see

(18); ‘3’ — the “surface-surface” bound k∗2
ss a2, see (21); ‘4’ — the “particle-particle”

bound k∗2
ppa2, see (20)

Here the needed two-point correlations, as evaluated by Doi [2], read

η2 = exp
(

4
3πna3

)
, D(ρ) = 1 + 3

4 ρ − 3
16 ρ3 ,

F pp(ρ) =
(
η

D(ρ)
2 − η2

2

)
(1 − H(ρ − 2)) ,

1
S

F ps(ρ) =
(

η2 −
(2 + ρ)(η2

2 + F pp(ρ)
4η2

)
(1 − H(ρ − 2)) ,

1
S2

F ss(ρ) =
{(

1
6η1η2

2ρ
+

(2 + ρ)2

16η2
2

) (
η2
2 + F pp(ρ)

)
− 1

}
(1 − H(ρ − 2)) ,

(30)

here ρ = r/a, H(r) is the Heaviside function.
The moments (14) can be evaluated in this case only numerically. The ap-

propriate bounds on the dimensionless effective absorption coefficient k∗2a2 are
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shown in Fig. 1 as functions on the volume fraction η1 of the sink constituent. It
is seen that our bound (17) does improve upon the Doi one, given in (17), but
the improvement is small and shows up only at very high values of the fraction
η1. The behaviour of the “surface-surface” bound k∗2

ss a2, see (21), deserves some
more attention. For dilute fractions η1 � 1, it is undoubtedly better than the
‘particle-particle” one, see (26), since the Boolean and “nonoverlapping” dispersions
share the same effective properties in the dilute limit. However, in the region
η1 ∈ (0.1, 0.3), a bit unexpectedly, k∗2

ss a2 falls below k∗2
ppa2. Only at η1 > 0.3 the

“surface-surface” bound becomes superior as compared to the “particle-particle”
one. Moreover, it becomes much more sensible when η1 increases. At the same
time the bound k∗2

ppa2 deteriorates badly with increasing η1. The reason is clear: in
the Boolean model, when the sink fraction increases, the overlapping becomes more
and more frequent, the shape of the aggregates formed by the particles becomes
more and more complicated and the specific surface increases considerably as a
result.
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